LatihanSoal UN SMP Online Matematika - Prediksi Dan Tryout 2. Pilihlah Salah Satu Jawaban yang Paling Tepat. 1. Hinda memiliki pita sepanjang 5 ½ m, kemudian membeli lagi sepanjang 1 ⅓ m di toko. Selanjutnya, pita tersebut digunakan untuk membuat hiasan bunga sepanjang 2 ¾ m dan 2 ⅙ meternya digunakan untuk membungkus kado. Caramenghitung luas segitiga menggunakan php. Dalam Menghitung Luas Segitiga Sama Sisi, Kita Akan Menggunakan Rumus Umum Segitiga Yang Digunakan Untuk Mencari Luas Yaitu: Luas segitiga = 1/2×alas×tinggi luas = 1/2 x a x t. L = ½ x 40 x 25. L = 1/2 x 10 x 6. L = 500 Cm 2. Tentukanluas segitiga hasil bayangan dari segitiga ABC dimana A(2,1), B(3,5) dan C(6,1) oleh. Ada 3 cara menentukan hasil komposisi dua Untuk komposisi dilatasi dengan pusat O bisa dilakukan dengan 2 cara yaitu dengan dilatasi satu per satu atau dengan menentukan terlebih dahulu faktor skala hasil komposisi yaitu dengan mengalikan Langkahlangkah dalam mengerjakan Transformasi Geometri Luas Bangun dataryaitu : 1). Jika yang ditanyakan luas bayangannya, maka cukup kerjakan yang ada dilatasinya saja. dengan luas awalnya. 2). menggunakan matriks tersebut digabungkan dengan dilatasi jika ada. 3). Bayanganakibat dilatasi ditentukan oleh titik pusat dan faktor skala. Dilatasi dengan pusat O Cara menentukan hasil translasi x' dan y' sebagai berikut. x' = x + a = -5 + 4 = -1; Maka luas segitiga A'B'C' dihitung dengan cara dibawah ini: bayangantitik-titik sudut segitiga tersebut. 3. Untuk menunjukkan kebenaran sifat ini caranya sbb. Klik sub icon "area" Klik kedua daerah segitiga tersebut, maka akan muncul luas daerah-daerah segitiga tersebut. Bandingkan maka kan tertentu perbandingannya. Gb. 4 Perbandingan luas daerah suatu bangun dengan bayangannya adalah 1 : µ Sifat 2 SILABUS MATA PELAJARAN MATEMATIKA SMPN 12 Banjarmasin Kelas VII KURIKULUM 2013 Satuan Pendidikan Kelas / Semester Kompetensi Inti* Kompetensi Inti 2 : : SMPN 12 Banjarmasin VII / 1 : Kompetensi Inti 3 : Kompetensi Inti 4 : Menghargai dan menghayati perilaku jujur, disiplin, tanggungjawab, peduli (toleransi, gotong royong), santun, percaya xQqc. BerandaTentukan luas bayangan setiap benda berikut hasil ...PertanyaanTentukan luas bayangan setiap benda berikut hasil dilatasi dengan faktor skala k = 2 dan pusat di titik O 0 , 0 . c. Layang-layang A − 3 , 0 , B 0 , 5 , C 3 , 0 , dan D 0 , − 7 .Tentukan luas bayangan setiap benda berikut hasil dilatasi dengan faktor skala dan pusat di titik . c. Layang-layang , dan . RRR. RGFLLIMAMaster TeacherJawabanluas bayangan layang-layang ABCD adalah 144 satuan Luasluas bayangan layang-layang ABCD adalah 144 satuan LuasPembahasanJawaban Jadi, luas bayangan layang-layang ABCD adalah 144 satuan Luas Jawaban Jadi, luas bayangan layang-layang ABCD adalah 144 satuan Luas Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!569Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Menghitung Luas paparan Bangun Menjemukan –Pada topik sebelumnya, kalian telah membiasakan tentang transformasi titik, garis, dan kurva. Kalian tentu mengerti bahwa berbunga beberapa noktah dan beberapa garis dapat dibuat kenap. Nah, siapa ini kalian akan membiasakan tentang kaidah menentukan luas bayangan semenjak bangun datar setelah ditransformasi. Sebagai halnya kalian ketahui, suatu bangun menjemukan jika ditransformasi akan mengalami perubahan. Tentang peralihan tersebut dapat berupa posisi atau letak, dapat pula bentuk bangunnya, atau sekali lagi ukurannya. Sebelum membicarakan lebih lanjur mengenai luas bayangan bangun ruang, mari kita bangun kembali cara menghitung luas segitiga jika diketahui koordinat ketiga titik sudutnya. Luas segitiga sama Lambang bunyi dengan koordinat titik-bintik sudut Ax1, y1, Bx2, y2, dan Cx3, y3 dapat ditentukan dengan menggunakan rumus berikut Cukuplah, kerjakan mempermudah pemahaman kalian tentang bagaimana menentukan luas bayangan ingat datar, mari kita perhatikan contoh berikut. Tentukan luas cerminan persegi panjang ABCD dengan koordinat A2, 0, B6,0, C6, 2, dan D2,2 jika ditransformasikan terhadap matriks berikut 2 0 0 2 2002 1 − 1 1 2 11−12 1 1 0 2 1012 Perampungan 1 Berdasarkan konsep transformasi, diperoleh hasil transformasi laksana berikut 2 0 0 2 2 0 6 0 6 2 2 2 2002 26620022 = 4 0 12 0 12 4 4 4 =4121240044 Berdasarkan uraian di atas, dapat kita simpulkan bahwa bayangan titik A, B, C, dan D berduyun-duyun merupakan A’4, 0, B’12, 0, C’12, 4, dan D’4, 4. Berdasarkan gambar di atas, tampak bahwa lembaga bayangan hasil transformasi masih berupa persegi tahapan. Luas A’B’C’D’ = A’B’ x A’D’= 8 x 4 =32 runcitruncit luas. 2 Bersendikan konsep transmutasi, diperoleh hasil transformasi sebagai berikut 1 − 1 1 2 2 0 6 0 6 2 2 2 11−12 26620022 = 2 − 2 6 − 6 8 − 2 4 2 =2684−2−6−22 Berdasarkan uraian di atas, dapat kita simpulkan bahwa bayangan titik A, B, C, dan D berendeng-rendeng adalah A’2, -2, B’6, -6, C’8, -2, dan D’4, 2. Berdasarkan gambar di atas, tampak bahwa susuk paparan hasil transfigurasi konkretbaris genjang. Bikin menentukan luas segiempat A’B’C’D’, perhatikan persegi panjang PQRD dengan PQ = 6 cm dan QR = 8 cm. Luas A’B’C’D’= Luas PQRD – Luas ΔPB’A’ – Luas ΔB’QC’ – Luas ΔC’RD’ – Luas ΔA’D’D= 6 x 8 – ½ x PB’ x PA’ – ½ x B’Q x QC’ – ½ x C’R x RD’ – ½ x A’D x DD’= 48 – ½ x 4 x 4 – ½ x 2 x 4 – ½ x 4 x 4 – ½ x 4 x 2= 48 – 8 – 4 – 8 – 4 =24 satuan luas 3 Berlandaskan konsep transformasi, diperoleh hasil transformasi sebagai berikut 1 1 0 2 2 0 6 0 6 2 2 2 1012 26620022 = 2 2 6 6 6 10 2 6 =266226106 Berdasarkan uraian di atas, dapat kita simpulkan bahwa bayangan titik A, B, C, dan D berturut-turut yakni A’2, 2, B’6, 6, C’6, 10, dan D’2, 6. Berdasarkan gambar di atas, kelihatan bahwa bentuk cerminan hasil transformasi berupa jajar genjang. L A ′ B ′ C ′ D ′ LA′B′C′D′ = A ′ B ′ × A ′ D ′ =A′B′×A′D′ = D C 2 + B ′ C 2 − − − − − − − − − − √ =DC2+B′C2 = 4 2 + 4 2 − − − − − − √ × 4 =42+42×4 = 4 2 – √ × 4 =42×4 = 16 2 – √ satuan luas =162 rincih luas Apa yang boleh kalian simpulkan berusul hasil yang diperoleh pada arketipe 1? Silakan kita perhatikan tabel berikut. Berdasarkan tabel di atas, tampak bahwa luas bangun paparan sebabat dengan determinan matriks transformasi dikalikan dengan luas bangun sediakala. Secara publik, jika suatu siuman ki boyak dengan luas L ditransformasikan maka dari itu suatu transformasi yang bersesuaian dengan matriks a c b d abcd , maka luas sadar bayangannya yakni L ′ = ∣ ∣ ∣ a c b d ∣ ∣ ∣ × L L′=abcd ×L . Agar kalian lebih jelas, mari kita perhatikan bilang contoh berikut. Diketahui segitiga OAB dengan koordinat titik sudutnya adalah O0, 0, A4, 0, dan B2, 3. Sekiranya segitiga OA’B’ ialah cerminan berpangkal segitiga sama OAB oleh transformasi yang bersesuaian dengan matriks 0 1 − 1 0 0−110 , maka tentukan luas bangun bayangannya. Penuntasan Dengan menunggangi pendekatan koordinat, luas bangun segitiga sama OAB yakni Dengan demikian, luas paparan berpangkal OAB ialah L Δ Ozon A ′ B ′ = ∣ ∣ ∣ 0 1 − 1 0 ∣ ∣ ∣ × 6 = 6 satuan luas LΔOA′B′=0−110 ×6=6 runcitruncit luas . Diketahui persegi ABCD dengan koordinat titik sudutnya adalah A–2, 0, B0, –2, C2, 0, dan D0, 2. Titik A’, B’, C’, dan D’ adalah titik hasil transformasi persegi ABCD dengan matriks − 3 − 2 2 1 −32−21 . Hitunglah luas bayangan persegi tersebut. Penuntasan Perhatikan tulangtulangan persegi ABCD berikut Dari rencana di atas, kelihatan bahwa panjang AO = BO = 2 satuan panjang. Dengan demikian, persegi ABCD memiliki ukuran panjang sisi = 2 2 – √ 22 asongan panjang dan luasnya yaitu 2 2 – √ × 2 2 – √ = 8 22×22=8 satuan luas. Jadi, luas bayangan dari persegi ABCD adalah 8 satuan luas. Diketahui segitiga sama kaki PQR dengan koordinat bintik sudut P-3, 4, Q1,1, dan R3, 4. Jika segitiga sama P’Q’R’ adalah cerminan segitiga PQR maka dari itu transformasi yang bersesuaian dengan matriks 1 2 0 3 1023 , maka tentukan luas P’Q’R’. Penyelesaian Dengan memperalat pendekatan koordinat, maka luas segitiga sama PQR merupakan L Δ P Q R LΔPQR = 1 2 × ∣ ∣ ∣ − 3 4 1 1 3 4 − 3 4 ∣ ∣ ∣ =12×−313−34144 = 1 2 × − 3 + 4 + 12 − 4 − 3 + 12 =12×−3+4+12−4−3+12 = 1 2 × 18 =12×18 = 9 satuan luas =9satuanluas Dengan demikian, luas bangun segitiga sama kaki PQ’R’ oleh metamorfosis 1 2 0 3 1023 adalah L Δ P ′ Q ′ R ′ = = = ∣ ∣ ∣ 1 2 0 3 ∣ ∣ ∣ × 9 3 × 9 27 rincih luas LΔP′Q′R′=1023 ×9=3×9=27satuanluas Ayo uji pemahaman kalian dengan mengerjakan deka- latihan soal yang suka-suka n domestik topik ini. cara mencari luas gambaran persegi panjang, mengejar luas segitiga sama kaki dengan matriks, teladan tanya dan pembahasan transfigurasi matriks, komposisi transformasi geometri, soal metamorfosis geometri kelas 12, Menghitung Luas bayangan Bangun Datar - Pada topik sebelumnya, kalian telah belajar tentang transformasi titik, garis, dan kurva. Kalian tentu mengetahui bahwa dari beberapa titik dan beberapa garis dapat dibuat bidang datar. Nah, kali ini kalian akan belajar tentang cara menentukan luas bayangan dari bangun datar setelah kalian ketahui, suatu bangun datar jika ditransformasi akan mengalami perubahan. Adapun perubahan tersebut dapat berupa posisi atau letak, dapat pula bentuk bangunnya, atau juga membahas lebih lanjut tentang luas bayangan bangun ruang, mari kita ingat kembali cara menghitung luas segitiga jika diketahui koordinat ketiga titik segitiga ABC dengan koordinat titik-titik sudut Ax1, y1, Bx2, y2, dan Cx3, y3 dapat ditentukan dengan menggunakan rumus berikutNah, untuk mempermudah pemahaman kalian tentang bagaimana menentukan luas bayangan bangun datar, mari kita perhatikan contoh luas bayangan persegi panjang ABCD dengan koordinat A2, 0, B6,0, C6, 2, dan D2,2 jika ditransformasikan terhadap matriks berikut2002 2002 1−112 11−12 1102 1012 Penyelesaian1Berdasarkan konsep transformasi, diperoleh hasil transformasi sebagai berikut2002 20606222 2002 26620022 =4012012444 =4121240044 Berdasarkan uraian di atas, dapat kita simpulkan bahwa bayangan titik A, B, C, dan D berturut-turut adalah A’4, 0, B’12, 0, C’12, 4, dan D’4, 4.Berdasarkan gambar di atas, tampak bahwa bentuk bayangan hasil transformasi masih berupa persegi A’B’C’D’ = A’B’ x A’D’= 8 x 4 = 32 satuan luas.2Berdasarkan konsep transformasi, diperoleh hasil transformasi sebagai berikut1−112 20606222 11−12 26620022 =2−26−68−242 =2684−2−6−22 Berdasarkan uraian di atas, dapat kita simpulkan bahwa bayangan titik A, B, C, dan D berturut-turut adalah A’2, -2, B’6, -6, C’8, -2, dan D’4, 2.Berdasarkan gambar di atas, tampak bahwa bentuk bayangan hasil transformasi berupa jajar menentukan luas segiempat A’B’C’D’, perhatikan persegi panjang PQRD dengan PQ = 6 cm dan QR = 8 A’B’C’D’ = Luas PQRD – Luas ΔPB’A’ – Luas ΔB’QC’ – Luas ΔC’RD’ – Luas ΔA’D’D= 6 x 8 – ½ x PB’ x PA’ – ½ x B’Q x QC’ – ½ x C’R x RD’ – ½ x A’D x DD’= 48 – ½ x 4 x 4 – ½ x 2 x 4 – ½ x 4 x 4 – ½ x 4 x 2= 48 – 8 – 4 – 8 – 4 = 24 satuan luas3Berdasarkan konsep transformasi, diperoleh hasil transformasi sebagai berikut1102 20606222 1012 26620022 =226661026 =266226106 Berdasarkan uraian di atas, dapat kita simpulkan bahwa bayangan titik A, B, C, dan D berturut-turut adalah A’2, 2, B’6, 6, C’6, 10, dan D’2, 6.Berdasarkan gambar di atas, tampak bahwa bentuk bayangan hasil transformasi berupa jajar satuan luas=162 satuan luasApa yang dapat kalian simpulkan dari hasil yang diperoleh pada contoh 1?Mari kita perhatikan tabel tabel di atas, tampak bahwa luas bangun bayangan sama dengan determinan matriks transformasi dikalikan dengan luas bangun umum, jika suatu bangun datar dengan luas L ditransformasikan oleh suatu transformasi yang bersesuaian dengan matriks acbd abcd , maka luas bangun bayangannya adalah L′=∣∣∣acbd ∣∣∣×LL′=abcd × kalian lebih jelas, mari kita perhatikan beberapa contoh segitiga OAB dengan koordinat titik sudutnya adalah O0, 0, A4, 0, dan B2, 3. Jika segitiga OA’B’ adalah bayangan dari segitiga OAB oleh transformasi yang bersesuaian dengan matriks 01−10 0−110 , maka tentukan luas bangun menggunakan pendekatan koordinat, luas bangun segitiga OAB adalahDengan demikian, luas bayangan dari OAB adalah LΔOA′B′=∣∣∣01−10 ∣∣∣×6=6 satuan luasLΔOA′B′=0−110 ×6=6 satuan persegi ABCD dengan koordinat titik sudutnya adalah A–2, 0, B0, –2, C2, 0, dan D0, 2. Titik A’, B’, C’, dan D’ adalah titik hasil transformasi persegi ABCD dengan matriks −3−221 −32−21 . Hitunglah luas bayangan persegi gambar persegi ABCD berikutDari gambar di atas, tampak bahwa panjang AO = BO = 2 satuan demikian, persegi ABCD memiliki ukuran panjang sisi = 22–√ 22 satuan panjang dan luasnya adalah 22–√×22–√=822×22=8 satuan luas bayangan dari persegi ABCD adalah 8 satuan segitiga PQR dengan koordinat titik sudut P-3, 4, Q1,1, dan R3, 4. Jika segitiga P’Q’R’ adalah bayangan segitiga PQR oleh transformasi yang bersesuaian dengan matriks 1203 1023 , maka tentukan luas P’Q’R’.PenyelesaianDengan menggunakan pendekatan koordinat, maka luas segitiga PQR adalahLΔPQRLΔPQR=12×∣∣∣−341134−34 ∣∣∣=12×−313−34144 =12×−3+4+12−4−3+12=12×−3+4+12−4−3+12=12×18=12×18=9satuanluas=9satuanluasDengan demikian, luas bangun segitiga PQ’R’ oleh transformasi 1203 1023 adalahLΔP′Q′R′===∣∣∣1203 ∣∣∣×93×927satuanluas LΔP′Q′R′=1023 ×9=3×9=27satuanluas Ayo uji pemahaman kalian dengan mengerjakan sepuluh latihan soal yang ada dalam topik mencari luas bayangan persegi panjang,mencari luas segitiga dengan matriks,contoh soal dan pembahasan transformasi matriks,komposisi transformasi geometri,soal transformasi geometri kelas 12, BerandaTentukan luas bayangan setiap benda berikut hasil ...PertanyaanTentukan luas bayangan setiap benda berikut hasil dilatasi dengan faktor skala k = 2 dan pusat di titik O 0 , 0 . ABC dengan A 1 , 1 , B 7 , 1 , dan C 4 , 9 .Tentukan luas bayangan setiap benda berikut hasil dilatasi dengan faktor skala dan pusat di titik . a. Segitiga dengan , , dan . RRR. RGFLLIMAMaster TeacherPembahasanJawaban Luas Bayangan adalah 96 satuan luas Jawaban Luas Bayangan adalah 96 satuan luas Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Dilatasi merupakan bagian dari transformasi geometri. Untuk dilatasi perubahan yang terjadi meliputi perubahan ukuran/skala sehingga luas dan keliling ataupun volum bangun tersebut berubah. Namun untuk bentuk benda tidak akan berubah. Misalkan sebuah persegi di dilatasi, maka hasilnya tetap persegi. Yang berubah hanya ukuran sisi persegi. Dalam dilatasi akan ada titik acuan. Pertama titik acuan 0,0 atau disebut dengan dilatasi dengan pusat O 0,0. Kedua dilatasi dengan pusat a,b. Dalam hal ini a , b bukan 0,0. a,b merupakan sebuah titik dengan nilai koordinat. Notasi dilatasi Dilatasi dengan Titik Pusat 0,0 [ O,k] Titik acuan atau patokan diambil 0,0. Secara umum untuk mencari bayangan x',y' dari titik asal x,y bisa digunakan rumus k disini adalah faktor dilatasi atau perbesaran objek dilatasi. Untuk nilai k > 1 maka benda diperbesar. Untuk nilai 0 1/2 y' = 1/2 x' 2+ 51/2 x' - 6. Untuk perapihan selanjutnya silahkan dilanjutkan sendiri. Contoh Soal Dilatasi x,y dengan pusat a,b Titik acuan atau patokan diambil a,b. Secara umum untuk mencari bayangan x',y' dari titik asal x,y bisa digunakan rumus x' = kx-a + a dan y'= ky-b+b k disini adalah faktor dilatasi atau perbesaran objek dilatasi. Untuk nilai k > 1 maka benda diperbesar. Untuk nilai 0 y'-1/2 = x'+2/2 2+ 5 x'+2/2 - 6. Untuk perapihan selanjutnya menjadi tugas anda, karena saya hanya menjelaskan prinsip dilatasi, bukan menyelesaikan sebuah persamaan . Untuk mempermudah, sebenarnya telah ada kalkulator untuk menghitung dilatasi. Bisa anda lihat dan gunakan di Kalkulator untuk Menghitung Transformasi Geometri.

cara menghitung luas bayangan segitiga hasil dilatasi